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On Fefferman’s Non-existence Problems

N. Aliev, Sh. Rezapour, and M. Jahanshahi

Abstract. Fefferman has propounded four open Cauchy problems A, B, C
and D in Navier-Stokes equations. The problems A and B refer to sufficient
condition for the existence of solutions, and the problems C and D to the ones
for the non-existence of solutions. Here, we shall answer to the problems C
and D.

1. Introduction

The Euler and Navier-Stokes equations describe the motion of a fluid in Rn

(n=2 or n=3) ([2], [5]). The steady-state of 3-dimensional case of Navier-Stokes
system of equations has been considered as a boundary value problem (BVP) in
[1]. This BVP for stationary case is associated to flows with free surfaces, flows
around bodies, channels and wakes behind bodies. In all these problems Navier-
Stokes equations are investigated over (finite or infinite) domain with boundary
conditions determined by physical considerations. But for non-stationary prob-
lems one needs besides the boundary conditions suitable initial conditions. In this
cases the Navier-Stokes equations are to be solved for an unknown velocity vector
u(x, t) = (ui(x, t))1≤i≤n ∈ Rn and pressure p(x, t) ∈ R, defined for space-variable
x ∈ Rn and time t ≥ 0. We restrict attention here to incompressible fluids filling
all of Rn. The Navier-Stokes equations are then given by

∂ui

∂t
+

n
∑

j=1

uj
∂ui

∂xj
= ν∆ui −

∂p

∂xi
+ fi(x, t) (x ∈ Rn, t ≥ 0)(1)

div u =
n

∑

i=1

∂ui

∂xi
= 0 (x ∈ Rn, t ≥ 0)(2)

with initial conditions

u(x, 0) = u0(x) (x ∈ Rn).(3)

Here, u0(x) is a given C∞ divergence-free vector field on Rn, fi(x, t) are the
components of a given externally applied force (e.g. gravity), ν is a positive coef-

ficient (the viscosity) and ∆ =
∑n

i=1
∂2

∂x2

i

is the Laplacian in the space variables.
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Equation (1) is just Newton’s gravity low, that is f = ma, for a fluid element
subject to the external force f = (fi(x, t))1≤i≤n and to the forces arising from
pressure and friction. Equation (2) just says that fluid is incompressible. For
physically requirements, we want to make sure u(x, t) does now grow large as
|x| −→ ∞. Hence, we will restrict to forces f and initial conditions u0 that satisfy

|∂α
x u0(x)| ≤ CαK(1 + |x|)−K on Rn, for any α and K(4)

and

|∂α
x ∂m

t f(x, t)| ≤ CαmK(1 + |x| + t)−K on Rn × [0,∞), for any α, m, K.(5)

For physical considerations we suppose a solution of (1), (2) and (3) which satisfies

p, u ∈ C∞(Rn × [0,∞))(6)

and
∫

Rn
|u(x, t)|2 dx < C, for all t ≥ 0 (boundary energy).(7)

Consequently, to rule out problems at infinity, we may look for spatially periodic
solutions of (1), (2) and (3). Thus, we assume that u0(x), f(x, t) satisfy the
following periodic conditions

(8) u0(x + ej) = u0(x), f(x + ej , t) = f(x, t), 1 ≤ j ≤ n

(ej is the j-th unit vector in Rn).
In place of (4) and (5), we assume that u0 is a smooth function, and that

(9) |∂α
x ∂m

t f(x, t)| ≤ CαmK(1 + |t|)−K on Rn × [0,∞), for any α, m, K.

We then accept a solution of (1), (2) and (3) as physically reasonable if it satisfies

u(x + ej , t) = u(x, t), on Rn × [0,∞), and for 1 ≤ j ≤ n(10)

and

p, u ∈ C∞(Rn × [0,∞)).(11)

A fundamental problem in analysis is to decide whether such smooth, physi-
cally reasonable solutions exist for the Navier-Stokes equations ([3]-[5]). To give
reasonable leeway to solvers while retaining the heart of the problem, Fefferman
asked for a proof of one the following four statements ([2], [4]).
(A) Existence and Smoothness of Navier-Stokes Solutions on R3. Take
ν > 0 and n = 3. Let u0(x) be any smooth, divergence-free vector field satisfying
(4). Take f(x, t) to be identically zero. Then there exist smooth functions p(x, t),
ui(x, t) on R3 × [0,∞) that satisfy (1), (2), (3), (6) and (7).
(B) Existence and Smoothness of Navier-Stokes Solutions in R3/Z3.
Take ν > 0 and n = 3. Let u0(x) be any smooth, divergence-free vector field sat-
isfying (8). Take f(x, t) to be identically zero. Then there exist smooth functions
p(x, t), ui(x, t) on R3 × [0,∞) that satisfy (1), (2), (3), (10) and (11).
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(C) Breakdown of Navier-Stokes Solutions on R3. Take ν > 0 and n = 3.
Then there exist a smooth, divergence-free vector field u0(x) on R3 and a smooth,
f(x, t) on R3 × [0,∞) satisfying (4) and (5), for which there exist no solutions
(p, u) of (1), (2), (3), (6) and (7) on R3 × [0,∞).
(D) Breakdown of Navier-Stokes Solutions on R3/Z3. Take ν > 0 and
n = 3. Then there exist a smooth, divergence-free vector field u0(x) on R3 and
a smooth, f(x, t) on R3 × [0,∞) satisfying (8) and (9), for which there exist no
solutions (p, u) of (1), (2), (3), (10) and (11) on R3 × [0,∞).

2. The Problem C

In this section we shall give some sufficient conditions for non-existence of
solutions of the problem C.

Theorem 2.1. If there exists an index i (1 ≤ i ≤ 3) such that

∫

R3
d x

[
∫ ∞

0
fi(x, t) d t + u0

i (x)

]

6= 0,

then the problem C holds.

Proof. For x ∈ R3 and t ≥ 0, we reform (1) in the following integral equation

∫

R3
dx

∫ ∞

0

∂ui(x, t)

∂t
d t +

3
∑

j=1

∫ ∞

0
d t

∫

R3
uj(x, t)

∂ui(x, t)

∂xj
dx =

= ν

∫ ∞

0
d t

3
∑

j=1

∫

R3

∂2ui(x, t)

∂x2
j

d x −

∫ ∞

0
d t

∫

R3

∂p(x, t)

∂xi
dx+

+

∫ ∞

0
d t

∫

R3
fi(x, t) dx,

for i = 1, 2, 3. Now by using (3), (6) and (7) in this equation, we have

∫

R3
d x

[
∫ ∞

0
fi(x, t) d t + u0

i (x)

]

= 0. �

Theorem 2.2. If there exists an index i (1 ≤ i ≤ 3) such that

∫

R3
dx

∫ ∞

0
[ui(x, t) + tfi(x, t)] d t 6= 0,

then the problem C holds.
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Proof. First we multiple the equation (1) by t and then we integrate it in the
following form

∫

R3
dx

∫ ∞

0
t
∂ui(x, t)

∂t
d t +

3
∑

j=1

∫ ∞

0
t d t

∫

R3
uj(x, t)

∂ui(x, t)

∂xj
dx =

ν
3

∑

j=1

∫ ∞

0
t d t

∫

R3

∂2ui(x, t)

∂x2
j

d x −

∫ ∞

0
t d t

∫

R3

∂p(x, t)

∂xi
dx+

+

∫ ∞

0
t d t

∫

R3
fi(x, t) dx,

for i = 1, 2, 3. Now by integrating part by part and simplifying of the result, we
obtain

�(∗)

∫

R3
dx

∫ ∞

0
[ui(x, t) + tfi(x, t)] d t = 0.

Theorem 2.3. If there exist indexes i, k (1 ≤ i, k ≤ 3) such that

−

∫

R3
xku

0
i (x) d x −

∫ ∞

0
d t

∫

R3
uk(x, t)ui(x, t) d x 6=

δik

∫ ∞

0
d t

∫

R3
p(x, t) dx +

∫ ∞

0
d t

∫

R3
xkfi(x, t) dx,

then the problem C holds.

Proof. First we multiple the equation (1) by xk (k = 1, 2, 3) and then we integrate
the result in the following form

∫

R3
xk dx

∫ ∞

0

∂ui(x, t)

∂t
d t +

3
∑

j=1

∫ ∞

0
d t

∫

R3
xkuj(x, t)

∂ui(x, t)

∂xj
dx =

= ν
3

∑

j=1

∫ ∞

0
d t

∫

R3
xk

∂2ui(x, t)

∂x2
j

d x −

∫ ∞

0
d t

∫

R3
xk

∂p(x, t)

∂xi
d x+

+

∫ ∞

0
d t

∫

R3
xkfi(x, t) d x,

for i = 1, 2, 3. Now by integrating part by part and simplifying of this equation,
we have

(∗∗)

−

∫

R3
xku

0
i (x) dx −

∫ ∞

0
d t

∫

R3
uk(x, t)ui(x, t) d x =

= δik

∫ ∞

0
d t

∫

R3
p(x, t) dx +

∫ ∞

0
d t

∫

R3
xkfi(x, t) dx.

�



N. Aliev, Sh. Rezapour, and M. Jahanshahi 5

Theorem 2.4. If there exists an index i (1 ≤ i ≤ 3) such that
∫

R3
dx

∫ ∞

0
tfi(x, t)) d t 6= 0,

then the problem C holds.

Proof. First multiple the equation (2) by xk (k = 1, 2, 3) and then integrate it in
the following form

3
∑

i=1

∫ ∞

0
d t

∫

R3
xk

∂ui(x, t)

∂xi
dx = 0.

Hence,

(∗ ∗ ∗)

∫ ∞

0
d t

∫

R3
uk(x, t) dx = 0,

for k = 1, 2, 3. Again, we can obtain the equation (∗) in a similar manner. Now
by replacement (∗ ∗ ∗) in (∗), we have

∫

R3
dx

∫ ∞

0
tfi(x, t) d t = 0. �

Theorem 2.5. If there exist indexes i, k with 1 ≤ i < k ≤ 3, such that
∫

R3
[xiu

0
k(x) − xku

0
i (x)] dx 6=

∫ ∞

0
d t

∫

R3
[xkfi(x, t) − xifk(x, t)] dx,

then the problem C holds.

Proof. For distinct indexes i and k (1 ≤ i, k ≤ 3) in (∗∗), we have

−

∫

R3
xku

0
i (x) d x−

∫ ∞

0
d t

∫

R3
uk(x, t)ui(x, t) d x =

∫ ∞

0
d t

∫

R3
xkfi(x, t) dx.

By replacement the indexes i and k in this equation, we obtain

−

∫

R3
xiu

0
k(x) dx−

∫ ∞

0
d t

∫

R3
ui(x, t)uk(x, t) d x =

∫ ∞

0
d t

∫

R3
xifk(x, t) dx.

By subtracting of these equations, we have
∫

R3
[xiu

0
k(x) − xku

0
i (x)] dx =

∫ ∞

0
d t

∫

R3
[xkfi(x, t) − xifk(x, t)] dx. �

Proposition 2.6. If for k = 1 or k = 2,
∫

R3
[x3u

0
3(x) − xku

0
k(x)] dx +

∫ ∞

0
d t

∫

R3
[u2

3(x, t) − u2
k(x, t)] dx 6=

∫ ∞

0
d t

∫

R3
[xkfk(x, t) − x3f3(x, t)] dx,

then the problem C holds.
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Proof. If the indexes i, k are equal in (∗∗), we have

−

∫

R3
xku

0
k(x) dx −

∫ ∞

0
d t

∫

R3
u2

k(x, t) dx =

∫ ∞

0
d t

∫

R3
p(x, t) d x +

∫ ∞

0
d t

∫

R3
xkfk(x, t) d x.

If we consider this equation for k = 3 and subtract it form the results for k = 1
and k = 2, we obtain

∫

R3
[x3u

0
3(x) − xku

0
k(x)] dx +

∫ ∞

0
d t

∫

R3
[u2

3(x, t) − u2
k(x, t)] dx =

d s

∫ ∞

0
d t

∫

R3
[xkfk(x, t) − x3f3(x, t)] dx,

for k = 1, 2. �

Theorem 2.7. Let ϕ(x, t) be a function with continuous first order partial deriv-

atives such that
3

∑

i=1

∫

R3
ui(x, t)

∂ϕ(x, t)

∂xi
d x 6= 0,

for all t > 0. Then, the problem C holds.

Proof. First multiple the equation (2) by ϕ(x, t) and then integrate it. By simpli-
fication of the result, we obtain

3
∑

i=1

∫

R3
ui(x, t)

∂ϕ(x, t)

∂xi
dx = 0,

for all t > 0. �

3. The Problem D

In this section we shall give some sufficient conditions for non-existence of
solutions of the problem D.

Theorem 3.1. If there exists an index i (1 ≤ i ≤ 3) such that
∫

[0,1]3

[
∫ ∞

0
fi(x, t) d t + u0

i (x)

]

dx 6= 0,

then the problem D holds.

Proof. The proof is based on the proof of Theorem 2.1, by replacing integration
in x on R3 with the one on [0, 1]3. �

Theorem 3.2. If there exists an index i (1 ≤ i ≤ 3) such that
∫

[0,1]3
d x

∫ ∞

0
[ui(x, t) + tfi(x, t)] d t 6= 0,

then the problem D holds.
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Proof. The proof is based on the proof of Theorem 2.2, by replacing integration
in x on R3 with the one on [0, 1]3. �

Theorem 3.3. Let ϕ(x, t) be a function with continuous first order partial deriv-

atives such that
3

∑

i=1

∫

[0,1]3
ui(x, t)

∂ϕ(x, t)

∂xi
dx 6= 0,

for all t > 0. Then, the problem D holds.

Proof. The proof is based on the proof of Theorem 2.7, by replacing integration
in x on R3 with the one on [0, 1]3. �
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